Standoff Project

THE VALUE OF PERFORMANCE.

Team: Tyler Hans Elaine Reyes Brandon Bass Sage Lawrence Dakota Saska

- Many standoffs are bonded to motor domes using adhesive
- Adhesive is applied and bracket is taped to help cure adhesive
- Taping is unreliable and costs money and man hours when it fails
- Analyze and build a prototype that will hold standoff brackets while adhesive cures

- The mounting arm shall:
 - a. Support brackets bonded 4-36 inches inboard from the motor ring
 - b. Have 6 degrees of freedom
 - c. Be mountable to several rocket motors
 - i. Orion 38
 - ii. Orion 50XL
 - iii. Castor 30XL
 - d. Be ESD (electrostatic discharge) compliant

Figure 1: Castor 50XL [1]

Project Description (3)

- d. Be adaptable to several mounting bracket templates
- e. Hold a bracket to up to 10 lbs
- f. Lock in place and apply a force of 20 lbs
- g. Have a Factor of Safety of 3.0 based on maximum expected loads
- h. Be easily manipulated by hand
- i. Perform a pull test of 50 lbs at 45 degrees of freedom

Figure 2: Castor 30XL [1]

Current "state-of-the-art" process:

<u>Tape</u> is used to hold the bracket, to the motor dome, in place while the adhesive cures.

Issues:

- ~5% failure rate
- Weather constraints
- Costly

Benchmark (1): 6 DOF Robot Arm [2]

Features:

- 6 degrees of freedom
- maneuverability

Figure 3: 6 DOF Robot Arm [2]

Benchmark (2): Kant Twist Stainless Steel Clamp [3]

Features:

- load capacity: 1500lb
- item depth: 2-1/4 inches
- adjusts to the curve of the ring

Figure 4: Kant Twist Stainless Steel Clamp [3]

Benchmark (3): Dual Arm [4]

Features:

- dexterity
- use of joints
- maneuverability
- use of two arms
- lifts over 110lb

Figure 5: Dual Arm [4]

- The sources that we collected are intended to provide insight and possible solutions into the problems we are tasked with for the project.
- The subject matter relevant to the problems proposed in the project included:
 - Electrostatic Discharge Protection [5]
 - Rocket Structure and Functionality [1,6]
 - Human Driven 6-DOF Articulated Arm
 [7,8]
 - Pull Test Procedure and Setup [9]
- The references were gathered to help the individual team members in their specialized tasks but can also be used by the team as a whole.

HROP GRUMM

Figure 6: Six-Axis Articulated Arm [7]

Customer and Engineering Requirements: Customer Needs

- 1. ESD compliance
- 2. Apply axial forces
- 3. Six degrees of freedom in movement
- 4. Usable 4" 36" inboard of ring
- 5. Transportability
- 6. Ease of operation
- 7. Durability
- 8. Reliability
- 9. Adjustable Interfaces
- 10. Support 10lbs in locked position
- 11. Minimum 3.0 Factor of Safety

Figure 7: Castor 38 [1]

Customer and Engineering Requirements: Engineering Requirements

- Electrically Conductive (Y or N)
- Mass (slugs)
- Principal Dimensions (in)
- Working Length (in)
- Working Angle (Degrees)
- Modulus of Elasticity (lbf/in²)

Table 1: QFD													
Customer Need	Weight	Engineering Requirement	Electrically Conductive (Y or N)	Mass (slugs)	Principal Dimensions (in)	Working Length (in)	Working Angle (Degrees)	Modulus of Elasticity (lbf/in ²)					
1. ESD compliance	0.10		9	0	0	0	0	0					
2. Apply axial forces	0.10		0	1	0	3	3	9					
3. Six degrees of freedom in movement	0.10		0	0	0	9	9	0					
4. Usable 4" - 36" inboard of ring	0.10		0	1	9	9	3	1					
5. Transportability	0.07		0	9	9	3	3	0					
6. Ease of operation	0.08		3	9	3	9	9	0					
7. Durability	0.09		0	3	0	0	0	9					
8. Reliability	0.09		0	3	0	0	0	9					
9. Adjustable Interfaces	0.10		0	3	0	3	3	0					
10. Support 10lbs in locked position	0.10		0	3	0	3	3	9					
11. Minimum 3.0 Factor of safety	0.07		0	3	0	0	0	9					
Absolute Technical Importance (ATI)			1.14	2.9	1.77	3.63	3.03	4.15					
Relative Technical Importance (RTI)			0.27	0.7	0.43	0.87	0.73	1					

Overall budget has been set at \$10,000 by Northrop Grumman

Expenses to date: \$0

Expected Expenses: ~\$8,000 with \$2,000 for contingency

Prototyping: ~\$1,000

Final Design: ~\$7,000

Schedule & Budget: Schedule for Capstone

Table 2: Gantt Chart																					
			DUDATION	RESPONSIBLE	PERCENT		8/2	26 - 8	/30			9,	/2 - 9	/6			9/	9 - 9/1	13		
	START DATE	END DATE	DURATION	ENGINEER	COMPLETE	М	T	W	Th	F	М	1 T		Th	F	Μ	T	W	Th	F	N
Original Design Project																					
Team Charter	8/28	9/4	6	Whole Team	100%																
System Requirements Review (SRR)	8/28	9/16	14	Client and Team	100%																
Presentation 1	8/28	9/18	16	Whole Team	75%																
Peer Evaluation 1	9/18	9/20	3	Individually	0%																
Presentation 2	9/18	10/9	16	Whole Team	0%																
Preliminary Report	9/18	10/16	21	Whole Team	0%																
Analyses Team Memo	9/18	10/23	26	Whole Team	0%																
Peer Evaluation 2	10/9	10/23	11	Individually	0%																
Website Check 1	9/18	10/30	31	Whole Team	0%																
Presentation 3	10/9	11/6	21	Whole Team	0%																
Final Report	10/16	11/13	21	Whole Team	0%																
Peer Evaluation 3	10/9	11/20	31	Individually	0%																
Final BOM/CAD	10/16	11/27	31	Whole Team	0%																
Prototype Demo	10/16	12/4	36	Whole Team	0%																
Website Check 2	10/30	12/4	26	Whole Team	0%																
Analytical Reports	10/16	12/11	41	Whole Team	0%																
Peer Evaluation 4	11/20	12/11	16	Individually	0%																
Preliminary Prototype Demo	10/16	12/4	36	Whole Team	0%																
Preliminary Design Review (PDR)	9/16	12/11	63	Client and Team	0%																
Critical Design Review (CDR)	9/16	Feb/Mar	N/A	Client and Team	0%																

NORTHROP	GRUMMAN

Table 2: Gantt Chart (cont.)																															
TASK NAME	9/16 - 9/20					9/23 - 9/27					9/30 - 10/4						10/	7 - 10	/11		10/14 - 10/18					10/21 - 10/25					
	Μ	Т	W	Th	F	М	Т	W	Th	F	Μ	Т	W	Th	F	Μ	Т	W	Th	F	Μ	Т	W	Th	F	Μ	Т	W	Th	F	
Original Design Project																															
Team Charter																															
System Requirements Review (SRR)																															
Presentation 1																															
Peer Evaluation 1																															
Presentation 2																															
Preliminary Report																															
Analyses Team Memo																															
Peer Evaluation 2																															
Website Check 1																															
Presentation 3																															
Final Report																															
Peer Evaluation 3																															
Final BOM/CAD																															
Prototype Demo																															
Website Check 2																															
Analytical Reports																															
Peer Evaluation 4																															
Preliminary Prototype Demo																															
Preliminary Design Review (PDR)																															
Critical Design Review (CDR)																															

Dakota Saska | NG Standoff Project | 9/18/19 15

System Requirements Review (SRR): Sept 16th - Completed

```
Preliminary Design Review (PDR): Finals Week Fall Semester
```

Critical Design Review (CDR): February/March

Northrop Symposium Day : Late April 2020

Northrop Mentor Meetings - Throughout both semesters

References

- [1] Propulsion Products Catalog, Northrop Grumman, Falls Church, VA, June 2018
- [2] "Six degrees of freedom Robot Arm," RobotDigg Equip Makers, [Online]. Available: https://www.robotdigg.com/product/1463/Six-degrees-of-freedom-Robot-Arm?gclid=EAIaIQobChMI5rPC87bZ5AIVsRx9Ch3RxgQZEAQYAyABEgKnYvD_BwE. [Accessed 16 September 2019].
- [3] "Kant Twist 515 303 Stainless Steel Clamp," Amazon, [Online]. Available: https://www.amazon.com/Kant-Twist-505-Stainless-Capacity/dp/B00AI7KWW6/ref=s. [Accessed 16 September 2019].
- [4] "Dual Arm," HDT Global, [Online]. Available: http://www.hdtglobal.com/product/dual-arm/. [Accessed 16 September 2019].
- [5] "The Prevention and Control of Electrostatic Discharge (ESD)", *Minicircuits.com*, 2019. [Online]. Available: https://www.minicircuits.com/app/AN40-005.pdf. [Accessed: 17- Sep- 2019].
- [6] D. Kumar B and S. Nayana B, "Design and Structural Analysis of Solid Rocket Motor Casing Hardware used in Aerospace Applications", *Journal of Aeronautics & Aerospace Engineering*, vol. 5, no. 2, 2016. Available: 10.4172/2168-9792.1000166.
- [7] O. Olwan, A. Matan, M. Abdullah and J. Abu-Khalaf, "The design and analysis of a six-degree of freedom robotic arm," 2015 10th International Symposium on Mechatronics and its Applications
- [8] V. Sangveraphunsiri and T. Ngamvilaikorn, "A six DOF master-slave human-assisted manipulator arm with relaxation of kinematics similarity," 2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02., Bankok, Thailand, 2002, pp. 388-393 vol.1.
- [9] J. Barush, "Selecting an Adhesive for Tensile Adhesion Testing (Pull-Off)", KTA University, 2019. [Online]. Available: https://ktauniversity.com/tensile-adhesion-testing-adhesives/. [Accessed: 18- Sep- 2019].

THE VALUE OF PERFORMANCE.

